1. The volume of the solid in the first octant bounded by the cylinder $z=4-x^{2}$ and the plane $y=4$ can be expressed as:

$$
\begin{aligned}
& \text { I. } \int_{0}^{4} \int_{0}^{4} 4-x^{2} d y d x \\
& \text { II. } \int_{0}^{2} \int_{0}^{4} \int_{0}^{4-x^{2}} 1 d z d y d x \\
& \text { III. } \int_{0}^{4} \int_{0}^{4} 4-x^{2} d x d y
\end{aligned}
$$

A. I.
B. II.
C. III.
D. I. and III.
E. None of the above
2. Evaluate the integral $\int_{0}^{1} \int_{0}^{u^{2}} \cos \left(u^{3}\right) d v d u$.
3. The volume between $f(x, y)=x^{2}+y^{2}$ and the $x y$-plane inside the region bounded by $x^{2}+y^{2}=1$ is $?$
4. Express $\iiint_{E} f(x, y, z) d V$ as an iterated integral in the two different ways below, where E is the solid bounded by the surfaces $y=4-x^{2}-z^{2}$ and $y=0$. (Find the limits of integration).
(a) $\iiint f(x, y, z) d y d z d x$
(b) $\iiint f(x, y, z) d z d y d x$
5. Evaluate the triple integral $\iiint_{E} z d V$ where E is the region in the first octant that lies between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.
6. Setup a line integral for $\int_{C} x y z d s$ where C is parametrized by $\mathbf{r}(t)=\langle\cos (2 t), \sin (2 t), 3\rangle, 0 \leq t \leq \pi$. Simplify as much as possible but do not evaluate the integral.
7. Find the work done by the force field $\mathbf{F}(x, y)=\mathbf{i}+(2 y+1) \mathbf{j}$ in moving an object along an arch of the cycloid

$$
\mathbf{r}(t)=(t-\sin t) \mathbf{i}+(1-\cos t) \mathbf{j}, \quad 0 \leq t \leq 3 \pi
$$

depicted below.

8. Use Greens Theorem to evaluate $\oint_{C} x^{2} y d x-x y^{2} d y$, where C is the circle $x^{2}+y^{2}=4$.
9. Consider the vector field $\mathbf{F}(x, y)=\left(7 y e^{7 x}\right) \mathbf{i}+\left(e^{7 x}+2 y\right) \mathbf{j}$
(a) Use a systematic approach to find a potential function for \mathbf{F}. Even if you can do it in your head, instead show work.
(b) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is parametrized by $\mathbf{r}(t)=\cos t \mathbf{i}+t \mathbf{j}, \quad t \in[0,2 \pi]$.
10. Which of the following vector field plots could be $\mathbf{F}=(x-y) \mathbf{i}+y \mathbf{j}$?

11. Express the volume in the first octant bounded by the plane $x+y+z=1$ in spherical coordinates.

$$
\int_{0}^{\theta_{2}} \int_{0}^{\phi_{2}} \int_{\rho_{1}}^{\rho_{2}}
$$

where

$$
\begin{array}{r}
\rho_{1}= \\
\rho_{2}= \\
\phi_{2}= \\
\theta_{2}=
\end{array}
$$

12. Sketch the region of integration for the integral below and write an equivalent integral with the order of integration reversed. Do not evaluate the integral.

$$
\int_{-2}^{0} \int_{x^{2}-1}^{3}\left(y^{2} \sin (x)+\tan (x y)\right) d y d x
$$

13. Evaluate the integral below.

$$
\int_{-3}^{0} \int_{-\sqrt{9-x^{2}}}^{0} \cos \left(4 x^{2}+4 y^{2}\right) d y d x
$$

14. Set up but do not evaluate the iterated integral for computing the volume of a region D if D is the right circular cylinder whose base is the disk $r=2 \cos \theta$ (in the $x y$-plane) and whose top lies in the plane $z=5-2 x$.

15. (a) Find a function f so that $\nabla f=\left(y^{2}-10 x z\right) i+(2 x y) j+\left(-5 x^{2}\right) k$.
(b) Evaluate the integral below.

$$
\int_{C}\left(y^{2}-10 x z\right) d x+(2 x y) d y+\left(-5 x^{2}\right) d z
$$

Here C is any path from $(1,1,0)$ to $(1,2,2)$.
16. Find the volume of the solid region $E=\{(x, y, z) \mid 0 \leq x \leq z, 1 \leq y \leq 5, y \leq z \leq 5\}$.
17. Find the work done by the force $\mathbf{F}=(6 x y+\sin (x)) \mathbf{i}+\left(3 x^{2}+2 x-\tan (y)\right) \mathbf{j}$ when moving a particle around the circle $x^{2}+y^{2}=9$ starting and ending at $(-3,0)$ traveling in the counterclockwise direction.
18. The density of the half-hemisphere defined by

$$
x^{2}+y^{2}+z^{2} \leq 4, \quad z \geq 0
$$

is equal to the distance above the $x y$-plane. Find the mass of this object.

